Discriminant Models of Uncertainty in Nominal Fields
نویسندگان
چکیده
Despite developments in error modeling in discrete objects and continuous fields, there exist substantial and largely unsolved conceptual problems in the domain of nominal fields. This article explores a novel strategy for uncertainty characterization in spatial categorical information. The proposed strategy is based on discriminant space, which is defined with essential properties or driving processes underlying spatial class occurrences, leading to discriminant models of uncertainty in area classes. This strategy reinforces consistency in categorical mapping by imposing class-specific mean structures that can be regressed against discriminant variables, and facilitates scale-dependent error modeling that can effectively emulate the variation found between observers in terms of classes, boundary positions, numbers of polygons, and boundary network topology. Based on simulated data, comparisons with stochastic simulation based on indicator kriging confirmed the replicability of the discriminant models, which work by determining the mean area classes based on discriminant variables and projecting spatially correlated residuals in discriminant space to uncertainty in area classes. Address for correspondence: Jingxiong Zhang, School of Remote Sensing Information Engineering and Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 LuoYu Road, Wuhan 430079, China. E-mail: [email protected] 8 M Goodchild, J Zhang and P Kyriakidis © 2009 Blackwell Publishing Ltd Transactions in GIS , 2009, 13(1)
منابع مشابه
Using contingency approach to improve firms’ financial performance forecasts
One of the challenging issues for investors and professionals is appropriate models to evaluate financial situation of the firms. In this regard, many models have been extracted by researchers using different financial ratios to resolve these issues. However, choosing a model based on the conditions and users’ needs is complex. The main objective of this study is to identify the effect of conti...
متن کاملDiscriminant Analysis for ARMA Models Based on Divergency Criterion: A Frequency Domain Approach
The extension of classical analysis to time series data is the basic problem faced in many fields, such as engineering, economic and medicine. The main objective of discriminant time series analysis is to examine how far it is possible to distinguish between various groups. There are two situations to be considered in the linear time series models. Firstly when the main discriminatory informati...
متن کاملThe study of the effective factors on investment in private sector in Iran “With emphasis on uncertainty”
Making capital and investment is the main driving forces of economic development. Based on the investment sensitivity to the changes of some of macro-economic variables and risk and uncertainty, the present study evaluated the effective factors on investment in private sector in Iran during 1980-2007. At first, the uncertainty variables of real informal exchange rate, nominal interest rate and ...
متن کاملRobust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work
The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...
متن کاملUncertainty Estimation in Stream Bed Sediment Fingerprinting Based on Mixing Model
Uncertainty associated with mixing models is often substantial, but has not yet been fully incorporated in models. The objective of this study is to develop and apply a Bayesian-mixing model that estimates probability distributions of source contributions to a mixture associated with multiple sources for assessing the uncertainty estimation in sediment fingerprinting in Zidasht catchment, Iran....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trans. GIS
دوره 13 شماره
صفحات -
تاریخ انتشار 2009